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LONG-TERM GOALS

a) Measure the Reynolds stresses, velocity profile, vorticity, dissipation, and turbulent spectra in the
bottom boundary layer of the coastal ocean using particle imaging velocimetry (PIV). The validity of
these direct stress measurements is independent of assumptions about the boundary layer structure,
turbulent spectra and balance of production and dissipation.
b) Quantify the temporal variation of turbulent stresses in relation to the oceanographic parameters
that represent the local environment, such as waves, currents, vertical density gradient, internal waves
and nature of the water-sediment interface. The conclusions will be used to determine the relative
importance of different mechanisms, which control the flow and turbulence in the benthic boundary
layer of the coastal ocean.
c) Quantify the spatial variation of the stress in different environments to determine the relationship
between point measurements and spatial averages, that are necessary for numerical modeling of coastal
currents.

OBJECTIVES

The objective of this project is to directly measure the flow structure and turbulence, including the
Reynolds stress, in the bottom boundary layer of the coastal ocean using particle image velocimetry
(PIV).

APPROACH

Particle image velocimetry (PIV) is capable of mapping two components of the instantaneous velocity
distribution within an entire section of a flow field. This method consists of illuminating the fluid with
a laser sheet while seeding the water with microscopic tracer particles. In oceanic applications the
natural seeding, as available data and our own experience indicate, is sufficient. If the laser is pulsed
more than once while recording a single (or two) image(s), each particle leaves multiple traces on the
same (or successive) recording medium (media). The most popular approach to data analysis consists
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of dividing the image into a large number of small windows and computing the mean displacement of
all the particles within each window. Typically, the analysis is based on computing the auto-correlation
function of the intensity distribution within the selected window.

Unlike point sensors, a sequence of PIV measurements provides a time series of the spatial
distribution, not just a time series of velocity at a single point. Such data enables measurements of the
vorticity distribution, rates of strain, turbulent stresses, turbulent spectra, spatial and temporal
correlations, energy dissipation. In previous reports and also in a series of recent papers (Bertuccioli et
al., 1999; Doron et al., 1999a, b) we describe a submersible PIV system that has been developed for
measuring the velocity distribution in the bottom boundary layer of the coastal ocean. This system
records up to 15 image pairs/s, although we have mostly recorded data at 1 Hz. The camera that has
been deployed until today has a resolution of 1K x 1K pixels2 and each instantaneous vector array
consists of 29x29 vectors. Further details are described in the references mentioned above and reports
provided in previous years.

WORK COMPLETED

Most of the effort during the past year has focused on analysis of data obtained in a series of tests
performed in New York Bight, 7 miles east of Highlands, NJ. In the previous report we described a
series of “short time” (132 s) measurements performed at different elevations above the bottom,
starting from 10 cm, up to 1.40 much. With data recorded at 1 Hz, we obtained 130 vector maps of 10
cm wide “flow strips” at each of the six elevation. As described in the next section, during FY 99 we
have performed considerable data analysis using these results, including computations of turbulent
spectra and evaluation of various methods to determine the dissipation rate.  In addition, we also
recorded longer data sets at 2 Hz for 24 minutes. The resulting more than 2800 vector maps at each
elevation provided sufficient data for convergence, longer range of wavenumbers and most important,
sufficient data for reliable statistics. Sample results are provided in the next section.

RESULTS

Individual velocity distributions can be used for obtaining true spatial spectra for the range of
wavenumbers covered with an individual image. We also combined a series of successive vector maps
into an extended “panoramic” view on the flow structure, using the Taylor Hypothesis and displacing
individual realizations by the instantaneous mean velocity multiplied by the delay between them (1 s
for the short series). This extended data base enabled us to extend to length (time) scales that exceed
the range covered by individual maps. Further details on the matching process can be found in
Bertuccioli at al. (1999) and Doron et al. (1999).  Comparisons between the extended series and
averaged true spatial spectra are presented in Figure 1. The short series are all within the inertial and
dissipation range whereas the long series extend to The slight differences are attributed to the effect of
interpolations in the extended series that “smear” some of the high wavenumber energy as well as the
effect of surface waves.
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Figure 2: Sample spectra
calculated from the
extended vector map.
Solid lines – E11; Dashed
lines – E33; Dotted lines –
Nasmyth universal
spectrum (which has a (-
5/3) slope in the inertial
range). The spikes in the
horizontal spectra are a
result of wave-induced
motion (verified by
comparison to pressure
transducer
measurements).

Figure 1: A
comparison between
true spatial spectra
obtained from
individual vector maps
(solid lines) and
extended spectra
determined by patching
130 vector maps using
the Taylor Hypothesis.



Samples of extended spectra for the short data series are presented in Figure 2. In order to enable a
clear view of the trends, the data shown is band-averaged onto a grid of 20 bins per decade. The
Nasmyth universal spectrum, based on the numerical values given by Oakey (1982) is also presented.
The range of resolved wavenumbers spans about 3 orders of magnitude, except near the floor, where it
is slightly smaller. For scales up to the size of a vector map (k1 > 31 rad/m), the spectra are derived
from spatial distributions that are directly measured, though they are slightly modified by the
interpolation as discussed above. The spectra contain only small regions with horizontal tails (that are
characteristic of high frequency white noise), at k1 > 400 rad/m, corresponding to wavelengths of less
than 1.6 cm.

At k1 < 8-10, E11 > E33 at all elevations. The substantially larger energy content of the horizontal
velocity fluctuations is due to the anisotropy of the turbulence and to the effect of the wave induced
motion, especially in the region of high peaks. Note that the anisotropy at very low wavenumbers,
where both E11 and E33 seem to reach some plateau, extends beyond the domain affected by surface
waves.  The jaggedness of the spectra in this range is caused by the small number of data points used
for evaluating Eii. The difference between E11 and E33 is most significant near the sea floor, and
decreases with increasing distance from the bottom. Although E11 changes shape at low wavenumbers,
the characteristic peak magnitudes remain at the same level. On the other hand, the characteristic peak
magnitude of E33 decreases by more than an order of magnitude between z = 128 cm and z = 12 cm.
This trend has been observed in laboratory measurements of flow in turbulent boundary layers, and has
led to setting the distance from the wall as the integral length scale, l, for boundary layer flow.
Consequently, at z = 12 cm the vertical velocity spectrum flattens at about k1 = 60 rad/m, i.e.,
l ≈ 10 cm, and at z = 44 cm the flattening starts at a k1=15, corresponding to l ≈ 40 cm.

At small scales E11 and E33 converge to similar slopes. In all cases the range of wavenumbers where a
(-5/3) slope line can be fitted does not exceed a decade. At the lowest station (z = 12 cm), this range is
even smaller. For isotropic turbulence, in the inertial range, E11(k1) = 3/4 E33(k1), a condition that is
clearly not satisfied in the present data.

Sample “dissipation spectra” (Tennekes and Lumley, 1972), i.e. plots of k1
2Eii, are presented in Figure

3, in both linear and logarithmic scales. The plots of the streamwise fluctuations (k1
2E11) do not tail off

at high wavenumbers due to noise. The plots of k1
2E33 exhibit clear peaks at k1 ≈ 100-150 rad/m

suggesting that the wavelength of peak dissipation is 4-6 cm. Thus, the present data extends to
wavenumbers in the dissipation range.

We evaluated several methods to estimate the dissipation rate, ε, of which three are only possible with
2-D spatial distributions of velocity. The first method is based on the exact definition of dissipation
rate ε = −2νSijSij = ν ∂ui ∂x j ∂ui ∂x j + ∂uj ∂xi( ). Using planar PIV we can measure five of these terms

directly, and the sixth can be determined from the
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continuity equation. For isotropic turbulence the known terms represent 8
Additional terms are estimated, assuming that all lateral fluctuations have
similar average magnitudes, leading to a “direct estimate of dissipation:

The only assumption is that cross-stream gradients are have the same ave
measured in-plane cross gradients. In isotropic turbulence these assumptio
second method is based on the hypothesis that the turbulence is locally ax
Hussein, 1991, Antonia et al., 1991). This assumption is less stringent tha
isotropy and leads to:

The third method involves an assumption of isotropic, homogeneous turb
range, which is not accurate for the present data. As shown in Hinze (197
(1972), E11 k1( )=18 55 1.6( )ε LF
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Figure 3: Sample
dissipation spectra
calculated from the
extended vector maps.
Solid lines: k1

2E33;
dashed lines: k1

2E11

Sample below: a fitted
Nasmyth curve to a
sample spectrum (shown
in linear scales).
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Since the streamwise velocity spectra are more susceptible to contamination by surface waves, we
evaluate the dissipation rate, εLF, from the spectra of the vertical component, based on the isotropic
ratio of E11=4/3E33. The estimates of εLF are obtained by fitting the Nasmyth universal spectrum
(Oakey, 1982) in the inertial range only. This method is similar to that proposed by Stewart and Grant
(1962). The fourth estimate is based on integrating the dissipation spectrum (Monin and Yaglom,
1975):

Since the present data does not extend to the Kolmogorov scale and the results in Figure 3 show effects
of noise , we fit a Nasmyth universal spectrum to our data (matching values in the noise-free region,
see Doron et al., 1999 for details) and then integrate the universal spectrum. Finally, in Large Eddy
Simulation (LES) of turbulent flows we introduce a Sub Grid Stress (SGS) Tensor ~τij = uiu j − ˜ u i ˜ u j
where “~” indicates spatial filtering. If the scale of the filtering is performed in the inertial range, the
condition of equilibrium suggests that the energy flux to smaller (subgrid) scales should provide an
estimate of the dissipation rate (Liu et al., 1994, 1999). Thus, εSG = −τ ij

˜ S ij , where Sij is the filtered rate

of strain. Using assumptions of equality of cross components we obtain

As shown in Table 1, the various methods provide comparable but different results (the curve-fitted
results are higher). Thus, even in the present anisotropic turbulence, estimates of dissipation based on
isotropy lead to reasonable results.

TABLE I

“Direct”Elevation
(cm) εD x 106 η (mm)

εLF x 106

(m2/s3)
εDS x 106

(m2/s3)
εAS x
106

εSG x 106

(m2/s3)
128 3.9 0.92 5.8 4.3 3.7 4.8
106 6.0 0.82 8.8 8.2 5.3 10.5
82 3.3 0.95 5.2 4.1 3.0 3.6
62 4.1 0.90 7.3 5.7 3.7 5.8
44 3.1 0.97 3.7 3.2 2.8 2.8
12 4.1 0.90 4.5 4.1 3.9 7.9

Long data Series: With the long data series we obtain considerably smoother velocity distributions as
demonstrated by the sample shown in Figure 4. Tests also show that the turbulence parameters are
fully converged when the data base exceeds 1000 vector maps (we have > 1800). The sample shown
extends between 10-30 cm above the bottom. A least-square fit to a logarithmic curve is also
presented. Note that although there seems to be a close match, the results clearly deviate from a log
curve (the line is not straight in the semi-log plot).  Besides converged statistics, the extended data
series also provides spectra that extend over four orders of magnitude of scales.

εSG =
1

2
3τ11

˜ S 11 + 3τ33
˜ S 33 + 12τ13

˜ S 13( )
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Figure 4: A logarithmic curve fit to the long data series. The same
result is shown on linear and semi-log scales to illustrate trends.

IMPACT/APPLICATIONS

The present measurements allow us to test fundamental assumptions about turbulence in the oceanic
bottom boundary layer; specifically the existence of logarithmic profile, the applicability of Taylor’s
hypothesis, methods to estimate dissipation and the dissipation-production balance.  In the future we
intend to look at flow structures, vorticity transport and evaluate turbulence models. Since the images
contain information about the particle distributions, we will also relate the sediment transport and
turbulence.

TRANSITIONS

During FY 2000 the submersible PIV system will be used at NSWC/Carderock to measure the flow
structure within wakes behind maneuvering submerged models.
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